A Q4/Q4 continuum structural topology optimization implementation
نویسنده
چکیده
A node-based design variable implementation for continuum structural topology optimization in a finite element framework is presented and its properties are explored in the context of solving a number of different design examples. Since the implementation ensures Ccontinuity of design variables, it is immune to elementwise checkerboarding instabilities that are a concern with element-based design variables. Nevertheless, in a subset of design examples considered, especially those involving compliance minimization with coarse meshes, the implementation is found to introduce a new phenomenon that takes the form of “layering” or “islanding” in the material layout design. In the examples studied, this phenomenon disappears with mesh refinement or the enforcement of sufficiently restrictive design perimeter constraints, the latter sometimes being necessary in design problems involving bending to ensure convergence with mesh refinement. Based on its demonstrated performance characteristics, the authors conclude that the proposed nodebased implementation is viable for continued usage in continuum topology optimization.
منابع مشابه
On the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملIsogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm
Topology optimization has been an interesting area of research in recent years. The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures. A two-dimensional plate is analyzed statically and the nodal displacements are calculated. The nodal displacements using Isogeometric analysis are found to be ...
متن کاملA ] 3 S ep 2 00 7 QUANTUM GROUPS ACTING ON 4 POINTS
We classify the compact quantum groups acting on 4 points. These are the quantum subgroups of the quantum permutation group Q4. Our main tool is a new presentation for the algebra C(Q4), corresponding to an isomorphism of type Q4 ≃ SO−1(3). The quantum subgroups of Q4 are subject to a McKay type correspondence, that we describe at the level of algebraic invariants.
متن کامل5 M ar 2 00 7 QUANTUM GROUPS ACTING ON 4 POINTS
We classify the compact quantum groups acting on 4 points. These are the quantum subgroups of the quantum permutation group Q4. Our main tool is a new presentation for the algebra C(Q4), corresponding to an isomorphism of type Q4 ≃ SO−1(3). The quantum subgroups of Q4 are subject to a McKay type correspondence, that we describe at the level of algebraic invariants.
متن کامل